
Partitioning Strategy Divide & Conquer
as CPANs: A Methodological Proposal

Mario Rossainz1, Manuel Capel2, Diego Sarmiento1

1Benemérita Universidad Autónoma de Puebla,
Faculty of Computer Science, Mexico

2University of Granada, Software Engineering Department,
Granada, Spain

rossainz@cs.buap.mx,manuelcapel@ugr.es,diegorojas0888@gmail.com

Abstract. This work proposes the use of Parallel Objects using the
High Level Parallel Compositions or CPAN model (Acronym in Span-
ish), to implement the communication patterns between processes most
used in solving parallel problems. Particularly the implementation of the
partitioning strategy divide and conquer as a CPAN using the object
orientation paradigm is shown. A CPAN comes from the composition
of a set three object types: An object manager that controls a set of
objects references, which address the object Collector and several Stage
objects and represent the CPAN components whose parallel execution is
coordinated by the object manager. Both Manager, collector and stages
are included in the definition of a Parallel Object (PO), [6]. Applications
that deploy the PO pattern can exploit the inter-object parallelism as
much as the internal or intra-object parallelism. A PO instance object
has a similar structure to that of an object in Smalltalk, and additionally
defines as cheduling politics, previously determined that specifies the way
in which one or more operations carried out by the instance synchronize
[6], [8]. Synchronization policies are expressed in terms of restrictions; for
instance, mutual exclusion in reader/writer processes or the maximum
parallelism allowed for writer processes. Thus, all the parallel objects de-
rive from the classic definition of a class more synchronization restrictions
(mutual exclusion and maximum parallelism), which are now included
in that definition [3]. Objects of the same class share the specification
contained in the class of which are instances. The inheritance allows
objects to derive a new specification from the one that already exists
in the super-class. Parallel objects support multiple inheritance in the
CPAN model. With the strategy divide and conquer as CPAN the parallel
processing technique called n-Tree is used to parallelize sequential code
that solve classic problems that can be partitioned by divide and conquer
a n-ary tree such as sum of numbers, ordering of numbers and N-body
problem. It shows the performance analysis of these implementations
(speedup, cpi, etc.), comparing them with their corresponding sequential
implementations to demonstrate their usefulness: programmability and
performance.

21

ISSN 1870-4069

Research in Computing Science 145 (2017)pp. 21–36; rec. 2017-09-05; acc. 2017-10-20



Keywords. CPANS, parallel objects, communication patterns, divide
and conquer, n-tree, structured parallel programming.

1 Introduction

At moment the construction of concurrent and parallel systems has less restraints
than ever, since the existence of parallel computation systems, more and more
affordable, of high performance, or HPC (High Performance Computing) has
brought to reality the possibility of obtaining a great efficiency in data process-
ing without a great rise in prices. Even though, open problems that motivate
research in this area still exist. Some of this problems of parallel programming
environments amount to the users acceptance, which usually depends on whether
they can offer complete expressions of the parallel programs behaviour that are
built with these environments [7]. At the moment in OO application systems,
the scientific community interested in the study of concurrency only accepts
standards for programming environments based on Parallel Objects (POs). A
first approach that tries to tackle this problem is to let the programmer to
develop his programs according to a sequential programming style, then, he can
automatically obtain the parallelised parts of the code with the help of a specific
environment.

However, intrinsic implementation difficulties exist mainly due to the dif-
ficult definition of programming languages formal semantics that refrain from
the automatic (without user participation) sequential code parallelisation, and
thus the problem of generating parallelism in an automatic way for a general
application continues unsolved. The so called structured parallelism has become
a promising approach to solve the mentioned problem. In general, parallel appli-
cations follow predetermined patterns of execution. Communication patterns are
rarely arbitrary and are not structured in their logic [10]. We are interested, in
particular, to do research work that has to do with parallel applications that use
predetermined communication patterns, among other componentsoftware. Even
so, with this promising approach, at least the following ones have currently been
identified as important open problems: The lack of acceptance structured parallel
programming environments of use to develop applications, [2], The necessity
to have patterns or High Level Parallel Compositions, the Determination of
a complete set of patterns as well as of their semantics, [7], the adoption of
an object-oriented approach, [6], [9]. CPANs are parallel patterns defined and
logically structured that, once identified in terms of their components and of their
communication, can be adopted in the practice and be available as high level
abstractions in user applications within an OO-programming environment. The
process interconnection structures of most common parallel execution patterns,
such as pipelines, farms and trees can be built using CPANs, within the work
environment of POs that is the one used to detail the structure of a CPAN
implementation.

A structured approach to parallel programming is based on the use of commu-
nication/interaction patterns (pipelines, farms, trees, etc.), which are predefined

22

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



structures of users application processes. In such a situation, the structured par-
allelism approach provides the interaction-pattern abstraction and describes ap-
plications through CPANs, which are able to implement the patterns mentioned
already. The encapsulation of a CPAN should follow the modularity principle and
it should provide a base to obtain an effective reusability of the parallel behaviour
to be implemented. When there is the possibility of attaining this, a generic
parallel pattern is built, which in its turn provides a possible implementation of
the interaction structure between processes of the application, independently of
the functionality of these. In addition, it is in line with the structured approach
we have adopted that is the enrichment of traditional parallel environments
with libraries of program skeletons [9] that concrete communication patterns
represent. What it really means is a new design approach to parallel applica-
tions. Instead of programming a concurrent application from the beginning and
controlling the creation of processes as well as the communications among them,
the user simply identifies those CPANs that can implement the adapted patterns
to the communication needs of his application and uses them together with the
sequential code that implements the computations that individually carry out
their processes. Several significant and reusable parallel patterns of intercon-
nection can be identified in multiple applications and parallel algorithms which
has resulted in a wide library of communication patterns between concurrent
processes such as CPANs whose details are found in [14] and [15]. In the present
work we have implemented the partitioning strategy divide and conquer using
N-Tree pattern as a generic CPAN and using the object orientation paradigm we
have realized its concretion in three particular applications: the add of numbers,
the sorting of numbers and the solution of N-body particles, using for this the
choice of three different strategies for the parallel implementation as CPANs of
its sequential algorithms. In this way it is the user’s own applications that specify
the semantics of the N-Tree-Divide and Conquer according to the requirements of
the software that was developed. Finally we show an analysis of the performance
in terms of acceleration Amdhal refers to the Cpans TreeDV in solving the above
problems, for a restricted range of exclusive processors in a parallel computer.

2 High Level Parallel Compositions (CPAN)

A CPAN comes from the composition of a set three object types: An object
manager that represents the CPAN itself and makes an encapsulated abstraction
out of it that hides the internal structure. The object manager controls a set of
objects references, which address the object Collector and several Stage objects
and represent the CPAN components whose parallel execution is coordinated by
the object manager.

The objects Stage are objects of a specific purpose, in charge of encapsulating
an client-server type interface that settles down between the manager and the
slave-objects. These objects do not actively participate in the composition of the
CPAN, but are considered external entities that contain the sequential algorithm
that constitutes the solution of a given problem. Additionally, they provide the

23

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



necessary inter-connection to implement the semantics of the communication
pattern which definition is sought. In other words, each stage should act a node
of the graph representing the pattern that operates in parallel with the other
nodes. Depending on the particular pattern that the implemented CPAN follows,
any stage of it can be directly connected to the manager and/or to the other
component stages.

The Collector object we can see an object in charge of storing the results
received from the stage objects to which is connected, in parallel with other
objects of CPAN composition. That is to say, during a service request the control
flow within the stages of a CPAN depends on the implemented communication
pattern. When the composition finishes its execution, the result does not return
to the manager directly, but rather to an instance of the Collector class that
is in charge of storing these results and sending them to the manager, which
will finally send the results to the environment, which in its turn sends them
to a collector object as soon as they arrive, without being necessary to wait for
all the results that are being obtained. In summary, a CPAN is composed of
an object manager that represents the CPAN itself, some stage objects and an
object of the class Collector, for each petition that should be managed within
the CPAN. Also, for each stage, a slave object will be in charge of implementing
the necessary functionalities to solve the sequential version of the problem being
solved (Figure 1). For details see [14].

Fig. 1. Internal structure of CPAN. Composition of its components.

The Figure 1 shows the pattern CPAN in general, without defining any
explicit parallel communication pattern. The box that includes the components,
represents the encapsulated CPAN, internal boxes represent compound objects
(collector, manager and objects stages), as long as the circles are the objects
slaves associated to the stages. The continuous lines within the CPAN suppose
that at least a connection should exist between the manager and some of the

24

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



component stages. Same thing happens between the stages and the collector. The
dotted lines mean more than one connection among components of the CPAN.

2.1 The CPAN seen as Composition of Parallel Objects

Manager, collector and stages are included in the definition of a Parallel Object
(PO), [6]. Parallel Objects are active objects, which is equivalent to say that
these objects have intrinsic execution capability, [6]. Applications that deploy
the PO pattern can exploit the inter-object parallelism as much as the internal or
intra-object parallelism. A PO-instance object has a similar structure to that of
an object in Smalltalk, and additionally defines a scheduling politics, previously
determined that specifies the way in which one or more operations carried out by
the instance synchronize, [6], [8]. Synchronization policies are expressed in terms
of restrictions; for instance, mutual exclusion in reader/writer processes or the
maximum parallelism allowed for writer processes. Thus, all the parallel objects
derive from the classic definition of a class plus the synchronization restrictions
(mutual exclusion and maximum parallelism), which are now included in that
definition [3]. Objects of the same class share the specification contained in the
class of which are instances. The inheritance allows objects to derive a new
specification from the one that already exists in the super-class. Parallel objects
support multiple inheritance in the CPAN model.

2.2 Communication Types in the Parallel Objects of CPAN

Parallel objects define 3 communication modes: synchronous, asynchronous com-
munication and synchronous future communication.

1. The synchronous communication mode stops the client activity until it re-
ceives the answer of its request from the active server object [1].

2. The asynchronous communication does not delay the client activity. The
client simply sends the request to the active object server and its execution
continues afterwards [1].

3. The asynchronous future will delay client activity when the method’s result
is reached in the client’s code to evaluate an expression. For details see [11].

The asynchronous and asynchronous future communication modes carry out
the inter-objects parallelism by executing the client and server objects at the
same time.

2.3 The Synchronization Restrictions of a CPAN

It is necessary to have synchronization mechanisms available when parallel re-
quest of service take place in a CPAN, so that the objects that conform it can
negotiate several execution flows concurrently and, at the same time, guarantee
the consistency in the data that being processed. Within any CPAN the restric-
tions MAXPAR, MUTEX and SYNC can be used for correct programming of
their methods.

25

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



1. MAXPAR: The maximum parallelism or MaxPar is the maximum number of
processes that can be executed at the same time. That is to say the MAXPAR
applied to a function represents the maximum number of processes that can
execute that function concurrently.

2. MUTEX: The restriction of synchronization mutex carries out a mutual
exclusion among processes that want to access to a shared object. The
mutex preserves critical sections of code and obtains exclusive access to the
resources.

3. SYNC: The restriction SYNC is not more than a producer/consumer type
of synchronization.

The details of the algorithms and their implementation can be seen in [14]
and [15].

3 Construction of a CPAN

Each CPAN is made up of several objects: an object manager, some stage objects
and a collector object for each request sent by client objects of the CPAN. In
PO the necessary base classes to define the manager, collector, stages objects
that compose a CPAN - the implementation details are in [14] - are the next
ones: Abstract class ComponentManager,

Abstract class ComponentStage and Concrete class ComponentCollector.
With the base-classes of the PO model of programming, it is now possible to
build concrete CPANs. To build a CPAN, first it should have made clear the
parallel behavior that the user application needs to implement, so that the CPAN
becomes this pattern itself. Several parallel patterns of interaction have long been
identified in Parallel Programming, such as farms, pipes, trees, cubes, meshes,
a matrix of processes, etc. Once identified the parallel behavior, the second
step consists of elaborating a graph of its representation, as an informal design
of the objective system. This practice is also good for illustrating the general
characteristics of the desired system and will allow us to define its representation
with CPANs later on, by following the pattern proposed in the previous section.
When the model of a CPAN has already been made clear, it defines a specific
parallel pattern; let’s say, for example, a tree, or some other mentioned pattern,
and then the following step will be to do its syntactic definition and specify its
semantics.

Finally, the syntactic definition prior to any programmed CPAN is trans-
formed into the most appropriate programming environment, with the objective
of producing its parallel implementation. It must be verified that the resulting
semantics is the correct one. To attain this, we use several different examples
to demonstrate the generality and flexibility of the application CPAN-based
design and the expected performance and quality as a software component. Some
support from an integrated development environment (IDE) for Parallel Pro-
gramming should be provided in order to validate the component satisfactorily.
The parallel patterns worked in the present investigation have been the pipeline
and the binary-tree to solve the sorting problem using two different algorithms.

26

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



4 The Technique of Divide and Conquer as a CPAN

The technique of it Divide and Conquer it is characterized by the division of a
problem in sub-problems that have the same form that the complete problem
[4]. The division of the problem in smaller sub-problems is carried out using
the recursion. The method recursive continues dividing the problem until the
parts divided can no longer follow dividing itself, and then they combine the
partial results of each sub-problem to obtain at the end the solution to the
initial problem [4]. In this technique the division of the problem is always made
in two parts, therefore a formulation recursive of the method Divide and Conquer
form a binary tree whose nodes will be processors, processes or threads [5], [12].

4.1 Representation of the Tree - Divide and Conquer (TreeDV) as
a CPAN

The representation of the patron tree that defines the technique of it Divide
and Conquer as CPAN has their model represented in figure 2. This parallel
solution offers the prospect of traversing several parts of the tree simultaneously
in the Cpan TreeDV. Once a division is made into two parts, both parts can
be processed simultaneously executing the sequential algorithm contained in the
slave object associated to the nodes of the tree. Though a recursive parallel
solution could be formulated. One could simply assign one process o thread to
each node in the tree.

4.2 Use and Utility of CPAN TreeDV

The potential of the CPAN TreeDV in the solution of various problems that can
be solved by applying the technique of divide and conquer generating a binary
tree is shown below.

Adding a list of numbers: A recursive definition for adding a list of numbers
is:

int add(int *s) {

if (number(s) <= 2) then return (n1+n2);

else{

divide(s, s1, s2);

part_sum1= add(s1);

part_sum2= add(s2);

return (part_sum1+part_sum2);

} }

In the code, number(s) returns the number of numbers in the list pointed to
by s. If there are two numbers in the list, they are called n1 and n2. If there is
one number in the list, it is called n1 and n2 is zero. If there are no numbers,

27

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



Fig. 2. The Cpan of a TreeDV.

both n1 and n2 are zero. Separate if statements could be used for each of the
cases; 0,1, or 2 numbers in the list. Each would cause termination of the recursive
call, [16].

Our parallel proposal is to make use of the Cpan TreeDV. The nodes of the
binary tree in the CPAN (stage processes) will be created dynamically through
the execution of the proposed sequential algorithm and that is associated to the
slave objects of each node in the tree. A more efficient solution adopted is to
reuse stage process at each level of the tree, ie the combining act of summation
of the partial sums can be done as ilustrated in figure 3. Once the partial sums
have been formed, each odd-numbered stage process passes its partial sum to
the adjacent even-numbered stage process, that is, Stage1 passes its sum to
Stage0, Stage3 to Stage2, Stage5 to Stage4, and so on. The even-numbered
stage processes then add the partial sum with its own partial sum and pass the
result onward, as shown in figure 3. This continues until Stage0 has the final
result which is passed to the Collector object of the CPAN and this in turn sends
it to the Manager object that passes the result to the user.

Quicksort sorting algorithm: The Quicksort sorting was created by Hoare
and is based on the paradigm of divide and conquer. As a first step the algorithm

28

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



Fig. 3. Adding a list of numbers using CPAN TreeDV.

selects as a pivot one of the elements of the data set you have to order. The array
is then partitioned on either side of the pivot: elements are moved so that those
greater than the pivot are to its right, whereas the others are to its left. If now
the sections of the array on either side of the pivot are sorted independently
by recursive and parallel calls of the algorithm [4], in this case through the
stage TreeDV CPAN objects, the final result is a completely sorted array, no
subsequent merge step being necessary.

Algorithm QuickSort(T[,..j]) {

var l;

if (j-i is sufficiently small) then insert(T[i..j])

else {

l= pivot(T[i..j]);

QuickSort(T[i..l-1]);

QuickSort(T[l+1..j]);

} }

To balance the sizes of the two subinstances to be sorted, we would like to
use the median element as the pivot. Unfortunately, finding the median takes
more time it is worth. For this reason we simply use an arbitrary element of the
array as the pivot, hoping for the best.

Algorithm pivot(T[i..j]) {

var l;

p=T[i]; k=i; l=j+1;

repeat {k=k+1;} until ((T[k]>p) or (k>=j));

repeat {l=l-1;} until (T[l]<=p);

29

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



while (k<l)

{

swap(T[k],T[l]);

repeat {k=k+1;} until (T[k]>p);

repeat {l=l-1;} until (T[l]<=p);

}

swap(T[i],T[l]);

return l; }

Suppose subarray T[i..j] is to be pivoted around p=T[i]. One good way of
pivoting consists of scanning the subarray just once, but starting at both ends.
Pointers k and l are initialized to i and j+1, respectively. Pointer k is then
incremented until T[k]¿p, and pointer I is decremented until T[l]¡=p. Now T[k]
and T[l] are interchanged. This process continues as long as k¡l. Finally, T[i] and
T[l] are interchanged to put the pivot in its correct position [4], (see figure 4) .

Fig. 4. Sequence of the QuickSort sort algorithm using CPAN TreeDV.

N-Body Problem: The N-Body problem is concerned with determining the
effects of forces between bodies, por example, astronomical bodies that are
attracted to each other through gravitational forces or charged particles are
also influenced by each other according to electrostatic law. We provide the
basic equations to enable the application to be coded as a CPAN TreeDV using
as a case study the N-Body problem in terms of particles charged according
to Coloumb’s electrostatic law; particles of opposite charge are attracted and
those of like charge are repelled. Also charged particles may move away from
each other. The objective is to find the positions and movements of the particles

30

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



in the space that are subject to electrostatic forces from other particles using
Coulomb laws.

For a computer simulation, we use values at particular times, t0, t1, t2, etc.,
the time intervals being as short as posible to achieve the most accurate solution.
Let the time interval be ∆t. Then, for a particular particle of mass m, the force
is given by:

F =
m(vt+1 − vt)

∆t
,

and a new velocity by:

vt+1 = vt +
F∆t

m
,

where vt+1 is the velocity of the particle at time t+ 1 and vt is the velocity
of the particle at time t. If a particle is moving at a velocity v over the time
interval ∆t, its position changes by:

xt+1 − xt = v∆t,

where xt is position at time t. Once particles move to new positions, the
forces change and the computation has to be repeated. The computation of the
attraction or not of N-particles according to their electrostatic charge is described
in the following algorithm:

for (t=0; t< tmax; t++) {

for(i=0;i<N;i++)

{

F=force(i);

v[i]_new = v[i]+F*dt/m;

x[i]_new = x[i]+v[i]_new*dt;

}}

for(i=0;i<nmax;i++) {

x[i]=x[i]_new;

v[i]=v[i]_new;

}

For each time period t, for each particle i, compute force on ith particle,
compute new velocity and new position. For each particle i update velocity and
position.

Parallelizing this algorithm can use partitioning where by groups of particles
are the responsability of each process, and each force is carrried in distint
messages between process. A large number of messages could result and it is
not feasible if N is very large, [16]. The complexity can be reduced using the
technique that a cluster of distant particles can be approximated as a single
distant particle of the total mass of the cluster sited at the center of mass of the
cluster.

31

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



This idea can be implemented as a CPAN by being applied recursively
generating a m-ary tree, in particular way, a quad − tree (a tree in which each
node of tree has four children) based on the Barnes-Hut algorithm, as you can
see in [13] and [16].

Fig. 5. Cpan QuadTree Particle.

A divide and Conquer formation to the problem using this clustering idea
start for a two-dimensional space in which one square contains the particles. This
square is recursively divided into four sub-squares creating a quadtree, ie a tree
with up to four edges from each edge. If a sub-square contains no particles, the
sub-square is deleted from futher considerarion. If a sub-square contains more
than one particle, it is recursively divided until every sub-square contains one
particle creates the quadtree. The tree will be unbalanced. The leaves represent
cells each containing one particle.

The Figure 5 represents the resultant quadtree like a CPAN. In the ”Cpan
QuadTree Particle” of figure 5, the total mass and center of mass of the subsquare
is stored at each node of tree. The force on each particle can be obtained by
traversing the tree starting at the root, stopping at a node when the clustering
approximation can be used for the particular particle, and otherwise continuing
to traverse the tree downward.

32

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



5 Performance

Performance analysis of CPANS TreeDV for adding a list of numbers, sorting a
list of numbers using Quicksort algorithm and the N-Body Problem are shown.
The aim is to show that, at least for these problems, the performances obtained
are ”good” based on the model of the CPAN. The CPAN TreeDV performance
to solve the problems mentioned was carried out on a parallel computer with 64
processors, 8 GB of main memory, high-speed buses and distributed shared mem-
ory architecture. Performance measures obtained in implementing the CPANs
TreeDV using Divide and Conquer Technique is carried out with the following
restrictions execution:

Fig. 6. Speedup scalability found for CpanTreeDV in solution of adding numbers
problem for 2, 4, 8, 16 and 32 exclusive processors.

– In the adding numbers problem, the same sequential sum algorithm was used
in each of the slave objects associated with the stages (nodes) of binary tree
that is generated in the Cpan TreeDV (see figure 3).

– In the sorting numbers problem, parallel implementation of sequential sort-
ing algorithm based on a CPAN TreeDV is Quicksort sorting algorithm based
on a binary tree (see figure 4).

– In both cases, both in the adding numbers problem and in the sorting
numbers problem, 50000 random integers were generated; cach number gen-
erated in a range between 0 and 50000, allowing make a sufficient charge
for processors and thereby observe the performance improvement CPAN
TreeDV.

– In the N-body problem, we work with a simulation of 50000 particles with
electrostatic charge moving randomly in space. The calculations were: find

33

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



Fig. 7. Speedup scalability found for CpanTreeDVQS in solution of sorting numbers
problem for 2, 4, 8, 16 and 32 exclusive processors.

Fig. 8. Speedup scalability found for CpanQuadTree in solution of N-body problem
for 2, 4, 8, 16 and 32 exclusive processors.

the positions and movements of the particles in the space that are subject
to electrostatic forces from other particles using Coulomb laws. For this, the
CPAN QuadTree calculated with the sequential algorithms associated with
the slave objects of the generated M-tree, the masses and the forces of each
particle (see figure 5).

These execution conditions allow a sufficient load for the processors and show
the good performance of the Cpan TreeDV when solving them. For all of them
the execution was performed in 2, 4, 8, 16 and 32 exclusive processors and the

34

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069



results are shown in the figure 6, figure 7 and figure 8. In them show the series
of measurements obtained including their corresponding sequential versions for
Cpans TreeDV, TreeDVQS and QuadTree, magnitude speedup found and the
upper bound on the magnitude of speedup using for that Amdahl’s law, moreover
the runtime execution in seconds of the programs.

Parallel executions of CPANS have a time shorter than the time used by
their corresponding sequential versions, as expected. The execution times of
their parallel versions CPANS improve as the number of processors is increased,
ie, as is increasing the number of processors with which CPANS are executed,
their execution times are decreasing. A value of the magnitude called speedup
is appreciated ever upward on improving execution times of parallel CPANS
respect to its sequential counterpart, but always below the levels of Amdahl’s
Law calculated, obtaining ”good” yields.

6 Conclusions

We have presented a method for design of concurrent applications based on
the construction of High Level Parallel Compositions or CPANS and which are
usually used in different platforms, such as C ++ and POSIX Threads. We
discuss the implementation of CPANs treeDV as generic and reusable patterns of
communication/interaction between processes which implements the algorithm
design technique called divide and conquer making use of an N-tree as a pattern
of communication associated, which can even be used by inexperienced paral-
lel application programmers to obtain efficient code by only programming the
sequential parts of their applications.The CPAN TreeDV has been reused in
the communication/interaction between the processes of three solved problems
with different implementation strategies of their respective sequential algorithms
of solution: the adding numbers problem, the sorting numbers problem and
de N-body (particles) problem. This selected problems have been included to
show speedup and low execution times about their best sequential version of the
algorithms that solve these problems. We have also obtained good performance
in their executions and speedup scalability compared to Amdahls law on the
number of processors used to obtain the solution.

References

1. Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison Wesley (2000)

2. Bacci, B., Danelutto, M., Pelagattii, S., Vaneschi, M.: SklE: A Heterogeneous
Environment for HPC Applications Parallel Computing. Springer, Vol. 25, No.
13–14 (1999)

3. Birrell, B.: An Introduction to Programming with Threads. Digital Equipment
Corporation, Systems Research Center, Palo Alto California, USA (1989)

4. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice-Hall (1997)

35

Partitioning Strategy Divide and Conquer as CPANs. A Methodological Proposal

Research in Computing Science 145 (2017)ISSN 1870-4069



5. Brinch, H.: Model Programs for Computational Science. A programming methodol-
ogy for multicomputers, Concurrency, Practice and Experience, Volume 5, Number
5 (1993)

6. Corradi, A., Leonardi, L.: PO constraints as tools to synchronize active objects.
Journal Object Oriented Programming, Vol. 4, No. 6, pp.41–53 (1991)

7. Corradi, A., Leonardo, L., Zambonelli, F.: Experiences toward an Object-Oriented
Approach to Structured Parallel Programming. DEIS Technical Report No.
DEISLIA-95-007 (1995)

8. Danelutto, M., Torquati, M: Loop parallelism: A new skeleton perspective on data
parallel patterns. In Proceedings of Intl. Euromicro PDP: Parallel Distributed and
Network-based Processing, Torino, Italy (2014)

9. Darlington, J.: Parallel programming using skeleton functions. In Proceedings
PARLE93, Munich (1993)

10. Hansen, B.: Model programs for computational science: A programming method-
ology for multicomputers. Concurrency Practice and Experience, Vol. 5, No. 5
(1993)

11. Lavander, G., Kafura, D.: A Polymorphic Future and First-class Function Type
for Concurrent Object-Oriented Programming in C++. Journal of Object-Oriented
Systems (1995)

12. Liwu, L.: Java Data Structures and Programming. Springer Verlag, Germany
(2002)

13. Roosta, S.: Parallel Processing and Parallel Algorithms. Theory and Computation,
Springer (1999)

14. Rossainz, M., Capel, M.: A Parallel Programming Methodology using Communica-
tion Patterns named CPANS or Composition of Parallel Object. In Proceedings of
20TH European Modeling & Simulation Symposium, Campora S. Giovanni, Italy
(2008)

15. Rossainz, M., Capel, M.: Design and implementation of communication patterns
using parallel objects. International Journal of Simulation and Process Modelling,
Volume 12, No. 1, Pp: 69–91 (2017)

16. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall, USA (1999)

36

Mario Rossainz López, Manuel I. Capel Tuñón, Diego Sarmiento Rojas

Research in Computing Science 145 (2017) ISSN 1870-4069


